MAT 303 - Calculus IV with Applications Practice Final Exam

Stony Brook University Fall 2023

[20 pts] Problem 1.
[5 pts] (i) Find the solution of the following initial value problem and give the interval of existence.

$$
y^{\prime}(x)+1=2 y(x), \quad y(0)=1
$$

[5 pts] (ii) Find the solution of the following initial value problem and give the interval of existence.

$$
y^{\prime}(x)=1+x+y(x)+x y(x), \quad y(0)=0 .
$$

[5 pts] (iii) Find the general solution and any singular solution of the ODE

$$
y^{\prime}=3 \sqrt{x y}
$$

[5 pts] (iv) Explain why there exists a unique local solution of the following initial value problem.

$$
y^{\prime}=x \ln y, \quad y(1)=1
$$

[20 pts] Problem 2.
[5 pts] (i) Examine whether the following ODE is exact.

$$
(2 x+3 y) d x+(3 x+2 y) d y=0
$$

[5 pts] (ii) Solve the above equation.
[5 pts] (iii) Give an initial condition for $y(0)$ so that the above initial value problem has a unique local solution.
[5 pts] (iv) With the value of $y(0)$ that you prescribed in part (iii) use Euler's method with 2 steps to approximate $y(1)$.
[15 pts] Problem 3. Find the general solutions of the following ODEs.
$[5 \mathrm{pts}] \quad$ (i) $6 y^{(4)}+11 y^{\prime \prime}+4 y=0$.
$[5 \mathrm{pts}] \quad$ (ii) $y^{\prime \prime}-y^{\prime}-2 y=3 x+4$.
$[5 \mathrm{pts}]$ (iii) $y^{(3)}+y^{\prime}=2-\sin x$.
[20 pts] Problem 4. Consider the system $x^{\prime}=-y, y^{\prime}=1.01 x-0.2 y$.
[5 pts] (i) Write the system in matrix form $\mathrm{x}^{\prime}=A \mathbf{x}$ and find its general solution using the eigenvalue method. (Note that $x(t), y(t)$ denote (real valued) functions but $\mathbf{x}(t)$ denotes a vector valued function.)
[5 pts] (ii) Use the above solution to compute the matrix exponential $e^{A t}$.
[5 pts] (iii) Solve the initial value problem $x(0)=0$ and $y(0)=1$. That is, $\mathbf{x}(0)=\binom{0}{1}$.
[5 pts] (iv) Draw the trajectories of the solution of part (iii). Use arrows to indicate the behavior of the solution as $t \rightarrow \infty$.
[15 pts] Problem 5. Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

[5 pts] (i) Find the eigenvalues of A, their multiplicity, and defect.
[5 pts]
(ii) Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ by finding generalized eigenvectors of A.
[5 pts] (iii) Find the general solution of $\mathrm{x}^{\prime}=A \mathrm{x}$ by computing the matrix exponential $e^{A t}$.
[15 pts] Problem 6. Study textbook problems on the following topics:
Natural growth models, population models, acceleration-velocity models, (forced) oscillations and resonance, endpoint problems.

